Metal mining is a global driver of environmental change
Metal mining is a global driver of environmental change

Metal mining is a global driver of environmental change

How did your country report this? Share your view in the comments.

Diverging Reports Breakdown

Metal mining is a global driver of environmental change

Global Resources Outlook 2024. Bend the Trend — Pathways to a Liveable Planet as Resource Use Spikes (UNEP, 2024). Implementing the material footprint to measure progress towards Sustainable Development Goals 8 and 12. Global socioeconomic material stocks rise 23-fold over the 20th century and require half of annual resource use. Climate change and sustainability as drivers for the next mining and metals boom. The need for climate-smart mining and recycling. A review of critical metal dynamics to 2050 for 48 elements. The Role of Critical Minerals in Clean Energy Transitions. World Energy Outlook Special Report (IEA, 2021). Future material demand for automotive lithium-based batteries. A pantropical assessment of deforestation caused by industrial mining. A case history of environmental impacts of an Indonesian coal chain. The role of renewable energy in the global energy transformation. An analysis of material stocks and flows in nine world regions from 1900 to 2035. A critical review of major metals demand, supply, and environmental impacts to 2100: a critical review.

Read full article ▼
Global Resources Outlook 2024. Bend the Trend — Pathways to a Liveable Planet as Resource Use Spikes (UNEP, 2024).

Lenzen, M. et al. Implementing the material footprint to measure progress towards Sustainable Development Goals 8 and 12. Nat. Sustain. 112, 6271 (2021).

Schandl, H. et al. Global material flows and resource productivity: forty years of evidence. J. Ind. Ecol. 22, 827–838 (2017).

Krausmann, F., Schandl, H., Eisenmenger, N., Giljum, S. & Jackson, T. Material flow accounting: measuring global material use for sustainable development. Ann. Rev. Environ. Resour. 42, 647–675 (2017).

Wiedenhofer, D. et al. Mapping and modelling global mobility infrastructure stocks, material flows and their embodied greenhouse gas emissions. J. Clean. Prod. 434, 139742 (2024).

Deetman, S. et al. Modelling global material stocks and flows for residential and service sector buildings towards 2050. J. Clean. Prod. 245, 118658 (2020).

Rousseau, L. S. A. et al. Material stock and embodied greenhouse gas emissions of global and urban road pavement. Environ. Sci. Technol. 56, 18050–18059 (2022).

Krausmann, F. et al. Global socioeconomic material stocks rise 23-fold over the 20th century and require half of annual resource use. Proc. Natl Acad. Sci. USA 114, 1880–1885 (2017).

Global Material Resources Outlook to 2060: Economic Drivers and Environmental Consequences (OECD, 2019).

Fishman, T., Schandl, H. & Tanikawa, H. Stochastic analysis and forecasts of the patterns of speed, acceleration, and levels of material stock accumulation in society. Environ. Sci. Technol. 50, 3729–3737 (2016).

Gielen, D. et al. The role of renewable energy in the global energy transformation. Energy Strat. Rev. 24, 38–50 (2019).

Wiedenhofer, D. et al. Prospects for a saturation of humanity’s resource use? An analysis of material stocks and flows in nine world regions from 1900 to 2035. Global Environ. Change 71, 102410 (2021).

Hodgkinson, J. H. & Smith, M. H. Climate change and sustainability as drivers for the next mining and metals boom: the need for climate-smart mining and recycling. Resour. Policy 74, 101205 (2021).

Watari, T., Nansai, K. & Nakajima, K. Major metals demand, supply, and environmental impacts to 2100: a critical review. Resour. Conserv. Recycl. 164, 105107 (2021).

Elshkaki, A., Graedel, T. E., Ciacci, L. & Reck, B. K. Resource demand scenarios for the major metals. Environ. Sci. Technol. 52, 2491–2497 (2018).

Watari, T., Nansai, K. & Nakajima, K. Review of critical metal dynamics to 2050 for 48 elements. Resour. Conserv. Recycl. 155, 104669 (2020).

The Role of Critical Minerals in Clean Energy Transitions. World Energy Outlook Special Report (IEA, 2021).

Xu, C. et al. Future material demand for automotive lithium-based batteries. Commun. Mater. 1, 99 (2020).

Giljum, S. et al. A pantropical assessment of deforestation caused by industrial mining. Proc. Natl Acad. Sci. USA 119, e2118273119 (2022).

Aguirre-Villegas, H. A. & Benson, C. H. Case history of environmental impacts of an Indonesian coal supply chain. J. Clean. Prod. 157, 47–56 (2017).

Nijnens, J., Behrens, P., Kraan, O., Sprecher, B. & Kleijn, R. Energy transition will require substantially less mining than the current fossil system. Joule 7, 2408–2413 (2023).

Luckeneder, S., Giljum, S., Schaffartzik, A., Maus, V. & Tost, M. Surge in global metal mining threatens vulnerable ecosystems. Global Environ. Change 69, 102303 (2021).

Sonter, L., Dade, M., Watson, J. & Valenta, R. Renewable energy production will exacerbate mining threats to biodiversity. Nat. Commun. 11, 4174 (2020).

Lèbre, É. et al. The social and environmental complexities of extracting energy transition metals. Nat. Commun. 11, 4823 (2020).

Bulayani, M., Raghupatruni, P., Mamvura, T. & Danha, G. Exploring low-grade iron ore beneficiation techniques: a comprehensive review. Minerals 14, 796 (2024).

Feng, Q. et al. Flotation of copper oxide minerals: a review. Int. J. Min. Sci. Technol 32, 1351–1364 (2022).

Werner, T. T. et al. Global-scale remote sensing of mine areas and analysis of factors explaining their extent. Glob. Environ. Change 60, 102007 (2020).

Maus, V. et al. A global-scale data set of mining areas. Nat. Sci. Data 7, 289 (2020).

Shobe, C. M., Bower, S. J., Maxwell, A. E., Glade, R. C. & Samassi, N. M. The uncertain future of mountaintop-removal-mined landscapes 1: how mining changes erosion processes and variables. Geomorphology 445, 108984 (2024).

Sonter, L. J., Moran, C. J., Barrett, D. J. & Soares-Filho, B. S. Processes of land use change in mining regions. J. Clean. Prod. 84, 494–501 (2014).

Werner, T. T., Bebbington, A. & Gregory, G. Assessing impacts of mining: recent contributions from GIS and remote sensing. Extr. Ind. Soc. 6, 993–1012 (2019).

González-Morales, M., Fernández-Pozo, L. & Ángeles Rodrguez-González, M. Threats of metal mining on ecosystem services. Environ. Res. 214, 114036 (2022).

Armendáriz-Villegas, E. J. et al. Metal mining and natural protected areas in Mexico: geographic overlaps and environmental implications. Environ. Sci. Policy 48, 9–19 (2015).

Kramer, M. et al. Extracted Forests: Unearthing the Role of Mining-Related Deforestation as a Driver of Global Deforestation (WWF, 2023).

Meißner, S. The impact of metal mining on global water stress and regional carrying capacities — a GIS-based water impact assessment. Resources https://doi.org/10.3390/resources10120120 (2021).

Macklin, M. G. et al. Impacts of metal mining on river systems: a global assessment. Science 381, 1345–1350 (2023).

Sonter, L. J. et al. Mining drives extensive deforestation in the Brazilian Amazon. Nat. Commun. 8, 1013 (2017).

Junker, J. et al. Threat of mining to African great apes. Sci. Adv. 10.1126/sciadv.adl0335 (2024).

Schenker, V., Kulionis, V., Oberschelp, C. & Pfister, S. Metals for low-carbon technologies: environmental impacts and relation to planetary boundaries. J. Clean. Prod. 372, 133620 (2022).

Thomassen, G., Eswaran, A., van Passel, S. & Dewulf, J. A planetary boundary for mineral, metal, and fossil resource extraction rates: how much primary materials can a circular economy extract? Environ. Sci. Technol. 58, 20345–20351 (2024).

Sonter, L. J. et al. How to fuel an energy transition with ecologically responsible mining. Proc. Natl Acad. Sci. USA 120, e2307006120 (2023).

Nature. Position Statement (International Council on Mining and Metals, 2024).

Handbook on Environmental Due Diligence in Mineral Supply Chains (OECD, 2023).

Corporate Sustainability Due Diligence Directive. P9_TA(2024)0329 (European Parliament, 2024).

Sonter, L. J., Ali, S. H. & Watson, J. E. M. Mining and biodiversity: key issues and research needs in conservation science. Proc. Biol. Sci. 285, 20181926 (2018).

Boldy, R., Santini, T., Annandale, M., Erskine, P. D. & Sonter, L. J. Understanding the impacts of mining on ecosystem services through a systematic review. Extr. Ind. Soc. 8, 457–466 (2021).

Agboola, O. et al. A review on the impact of mining operation: monitoring, assessment and management. Results Eng. 8, 100181 (2020).

Farjana, S. H., Huda, N., Parvez Mahmud, M. A. & Saidur, R. A review on the impact of mining and mineral processing industries through life cycle assessment. J. Clean. Prod. 231, 1200–1217 (2019).

The Use of Natural Resources in the Economy: A Global Manual on Economy Wide Material Flow Accounting (UN Statistics Division, 2020).

Eurostat. Economy-Wide Material Flow Accounts: Handbook, 2018 edn (European Commission, 2018).

Standard & Poors. Gold mine stripping ratios rise on high prices, grades continue declining. https://www.spglobal.com/marketintelligence/en/news-insights/research/gold-mine-stripping-ratios-rise-on-high-prices-grades-continue-declining (2023).

CSIRO. Technical Annex for Global Material Flows Database, 2024 edn, https://www.resourcepanel.org/sites/default/files/technical_annex_for_global_material_flows_database_-_vers_4_june_2024.pdf (Australia National Science Agency, 2024).

Watari, T. & Yokoi, R. International inequality in in-use metal stocks: what it portends for the future. Resour. Policy 70, 101968 (2021).

Tracking Progress Toward Tripling Renewable Energy Capacity and Doubling Energy Efficiency by 2030 (International Renewable Energy Agency, 2024).

Li, L. et al. Review and outlook on the international renewable energy development. Energy Built Environ. 3, 139–157 (2022).

Critical Raw Materials for Strategic Technologies and Sectors in the EU: A Foresight Study (Joint Research Centre, 2020).

Reichl, C. & Schatz, M. World Mining Data 2024 (Federal Ministry of Finance, 2024).

Kroiss, A. & Giljum, S. Global extraction accounts of crude metal ores, 1970–2022. Zenodo https://doi.org/10.5281/zenodo.13843919 (2024).

Dilshara, P. et al. The role of nickel as a critical metal in clean energy transition: applications, global distribution and occurrences, production-demand and phytomining. J. Asian Earth Sci. 259, 105912 (2024).

Martins, L. S., Guimarães, L. F., Botelho Junior, A. B., Tenório, J. A. S. & Espinosa, D. C. R. Electric car battery: an overview on global demand, recycling and future approaches towards sustainability. J. Environ. Manag. 295, 113091 (2021).

CEPAL. Lithium Extraction and Industrialization: Opportunities and Challenges for Latin America and the Caribbean (ECLAC, 2023).

Bahini, Y., Mushtaq, R. & Bahoo, S. Global energy transition: the vital role of cobalt in renewable energy. J. Clean. Prod. 470, 143306 (2024).

Haque, N., Hughes, A., Lim, S. & Vernon, C. Rare earth elements: overview of mining, mineralogy, uses, sustainability and environmental impact. Resources 3, 614–635 (2014).

Mancheri, N. A., Sprecher, B., Bailey, G., Ge, J. & Tukker, A. Effect of Chinese policies on rare earth supply chain resilience. Resour. Conserv. Recycl. 142, 101–112 (2019).

Bebbington, A. J. et al. Resource extraction and infrastructure threaten forest cover and community rights. Proc. Natl Acad. Sci. USA 115, 13164–13173 (2018).

Murguía, D. I., Bringezu, S. & Schaldach, R. Global direct pressures on biodiversity by large-scale metal mining: spatial distribution and implications for conservation. J. Environ. Manag. 180, 409–420 (2016).

Azadi, M., Northey, S. A., Ali, S. H. & Edraki, M. Transparency on greenhouse gas emissions from mining to enable climate change mitigation. Nat. Geosci. 13, 100–104 (2020).

Zheng, X. et al. Greenhouse gas emissions from extractive industries in a globalized era. J. Environ. Manag. 343, 118172 (2023).

Ulrich, S., Trench, A. & Hagemann, S. Gold mining greenhouse gas emissions, abatement measures, and the impact of a carbon price. J. Clean. Prod. 340, 130851 (2022).

Owen, J. R. et al. Increasing mine waste will induce land cover change that results in ecological degradation and human displacement. J. Environ. Manag. 351, 119691 (2024).

Maus, V. et al. An update on global mining land use. Sci. Data 9, 433 (2022).

Marazuela, M., Vázquez-Suñé, E., Ayora, C., Garca-Gil, A. & Palma, T. The effect of brine pumping on the natural hydrodynamics of the Salar de Atacama: the damping capacity of salt flats. Sci. Total Environ. 654, 1118–1131 (2019).

Barenblitt, A. et al. The large footprint of small-scale artisanal gold mining in Ghana. Sci. Total Environ. 781, 146644 (2021).

Calvo, G., Palacios, J.-L. & Valero, A. The influence of ore grade decline on energy consumption and GhG emissions: the case of gold. Environ. Dev. 41, 100683 (2022).

Calvo, G., Mudd, G., Valero, A. & Valero, A. Decreasing ore grades in global metallic mining: a theoretical issue or a global reality? Resources 5, 36 (2016).

Northey, S., Mohr, S., Mudd, G. M., Weng, Z. & Giurco, D. Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining. Resour. Conserv. Recycl. 83, 190–201 (2014).

Teseletso, L. S. & Adachi, T. Future availability of mineral resources: ultimate reserves and total material requirement. Min. Econ. 36, 189–206 (2023).

Mudd, G. M. The environmental sustainability of mining in Australia: key mega-trends and looming constraints. Resour. Policy 35, 98–115 (2010).

Bainton, N., Kemp, D., Lèbre, E., Owen, J. R. & Marston, G. The energy–extractives nexus and the just transition. Sustain. Dev. 29, 624–634 (2021).

Tang, L. & Werner, T. T. Global mining footprint mapped from high-resolution satellite imagery. Commun. Earth Environ 4, 134 (2023).

Souza, C. M. et al. Reconstructing three decades of land use and land cover changes in Brazilian biomes with Landsat archive and Earth Engine. Remote Sens. https://doi.org/10.3390/rs12172735 (2020).

Annual Land Use Land Cover Maps of Brazil https://brasil.mapbiomas.org/en/ (MapBiomas Project, 2024).

Mataveli, G. et al. Mining is a growing threat within indigenous lands of the Brazilian Amazon. Remote Sens. 14, 4092 (2022).

Heijlen, W. & Duhayon, C. An empirical estimate of the land footprint of nickel from laterite mining in Indonesia. Extr. Ind. Soc. 17, 101421 (2024).

Quash, Y., Kross, A. & Jaeger, J. A. Assessing the impact of gold mining on forest cover in the Surinamese Amazon from 1997 to 2019: a semi-automated satellite-based approach. Ecol. Inform. 80, 102442 (2024).

Hayes, W. M. et al. Predicting the loss of forests, carbon stocks and biodiversity driven by a neotropical ‘gold rush’. Biol. Conserv. 286, 110312 (2023).

Siqueira-Gay, J., Sonter, L. J. & Sánchez, L. E. Exploring potential impacts of mining on forest loss and fragmentation within a biodiverse region of Brazil’s northeastern Amazon. Resour. Policy 67, 101662 (2020).

Bonfatti, R. & Poelhekke, S. From mine to coast: transport infrastructure and the direction of trade in developing countries. J. Dev. Econ 127, 91–108 (2017).

Ladewig, M., Angelsen, A., Masolele, R. N. & Chervier, C. Deforestation triggered by artisanal mining in eastern Democratic Republic of the Congo. Nat. Sustain. 7, 1452–1460 (2024).

Social Progress in Mining-Dependent Countries: Analysing the Role of Resource Governance in Delivering the UN Sustainable Development Goals (International Council on Mining and Metals, 2021).

Kumi, S., Adu-Poku, D. & Attiogbe, F. Dynamics of land cover changes and condition of soil and surface water quality in a mining-altered landscape, Ghana. Heliyon 9, e17859 (2023).

Abe, C. A., Lobo, F. L., Novo, E. M. Ld. M., Costa, M. & Dibike, Y. Modeling the effects of land cover change on sediment concentrations in a gold-mined Amazonian basin. Reg. Environ. Change 19, 1801–1813 (2019).

Souza-Filho, P. W. M. et al. Four decades of land-cover, land-use and hydroclimatology changes in the Itacaiúnas River watershed, southeastern Amazon. J. Environ. Manag. 167, 175–184 (2016).

Torres-Cruz, L. A. & O’Donovan, C. Public remotely sensed data raise concerns about history of failed Jagersfontein dam. Sci. Rep. 13, 4953 (2023).

Aires, U. R. V., Santos, B. S. M., Coelho, C. D., Da Silva, D. D. & Calijuri, M. L. Changes in land use and land cover as a result of the failure of a mining tailings dam in Mariana, MG, Brazil. Land Use Policy 70, 63–70 (2018).

Silva Rotta, L. H. et al. The 2019 Brumadinho tailings dam collapse: possible cause and impacts of the worst human and environmental disaster in Brazil. Int. J. Appl. Earth Obs. Geoinf. 90, 102119 (2020).

UN Water. The United Nations World Water Development Report 2024: Water for Prosperity and Peace (United Nations, 2024).

Aitken, D., Rivera, D., Godoy-Faúndez, A. & Holzapfel, E. Water scarcity and the impact of the mining and agricultural sectors in Chile. Sustainability 8, 128 (2016).

Northey, S. A., Mudd, G. M., Saarivuori, E., Wessman-Jääskeläinen, H. & Haque, N. Water footprinting and mining: where are the limitations and opportunities? J. Clean. Prod. 135, 1098–1116 (2016).

Water Reporting. Good Practice Guide 2nd edn (International Council of Mining and Metals, 2021).

Northey, S. A., Mudd, G. M., Werner, T. T., Haque, N. & Yellishetty, M. Sustainable water management and improved corporate reporting in mining. Water Resour. Ind. 21, 100104 (2019).

Boulay, A.-M. et al. The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (aware). Int. J. Life Cycle Assess. 23, 368–378 (2018).

Flexer, V., Baspineiro, C. F. & Galli, C. I. Lithium recovery from brines: a vital raw material for green energies with a potential environmental impact in its mining and processing. Sci. Total Environ. 639, 1188–1204 (2018).

Schomberg, A. C. & Bringezu, S. How can the water use of lithium brine mining be adequately assessed? Resour. Conserv. Recycl. 190, 106806 (2023).

Vera, M. L., Torres, W. R., Galli, C. I., Chagnes, A. & Flexer, V. Environmental impact of direct lithium extraction from brines. Nat. Rev. Earth Environ. 4, 149–165 (2023).

Akcil, A. & Koldas, S. Acid mine drainage (AMD): causes, treatment and case studies. J. Clean. Prod. 14, 1139–1145 (2006).

Simate, G. S. & Ndlovu, S. Acid mine drainage: challenges and opportunities. J. Environ. Chem. Eng. 2, 1785–1803 (2014).

Gerson, J. R. et al. Artificial lake expansion amplifies mercury pollution from gold mining. Sci. Adv. 6, eabd4953 (2020).

Gerson, J. R. et al. Amazon forests capture high levels of atmospheric mercury pollution from artisanal gold mining. Nat. Commun. 13, 1–10 (2022).

Hacon, Sd. S. et al. Mercury exposure through fish consumption in traditional communities in the Brazilian Northern Amazon. Int. J. Environ. Res. Public Health 17, 5269 (2020).

Holley, E. A. & Mitcham, C. The Pebble mine dialogue: a case study in public engagement and the social license to operate. Resour. Policy 47, 18–27 (2016).

Ghorbani, Y. & Kuan, S. H. A review of sustainable development in the Chilean mining sector: past, present and future. Int. J. Min. Reclam. Environ. 31, 137–165 (2017).

Bebbington, A. & Williams, M. Water and mining conflicts in Peru. Mountain Res. Dev. 28, 190–195 (2008).

Salem, J. et al. An analysis of Peru: is water driving mining conflicts? Resour. Policy 74, 101270 (2018).

Sosa, M. & Zwarteveen, M. Exploring the politics of water grabbing: the case of large mining operations in the Peruvian Andes. Water Altern. 5, 360 (2012).

Cole, M. J. ESG risks to global platinum supply: a case study of Mogalakwena mine, South Africa. Resour. Policy 85, 104054 (2023).

Odell, S. D., Bebbington, A. & Frey, K. E. Mining and climate change: a review and framework for analysis. Extr. Ind. Soc. 5, 201–214 (2018).

Pontes, P. R. M. et al. Effects of climate change on hydrology in the most relevant mining basin in the eastern legal Amazon. Water 14, 1416 (2022).

Liang, G., Liang, Y., Niu, D. & Shaheen, M. Balancing sustainability and innovation: the role of artificial intelligence in shaping mining practices for sustainable mining development. Resour. Policy 90, 104793 (2024).

IPBES. Global assessment report on biodiversity and ecosystem services. Zenodo https://doi.org/10.5281/zenodo.3831673 (2019).

Diaz, S. et al. Assessing nature’s contributions to people. Science 359, 270–272 (2018).

Mair, L. et al. A metric for spatially explicit contributions to science-based species targets. Nat. Ecol. Evol. 5, 836–844 (2021).

Owen, J. R. et al. Energy transition minerals and their intersection with land-connected peoples. Nat. Sustain. 6, 203–211 (2023).

Durán, A. P., Rauch, J. & Gaston, K. J. Global spatial coincidence between protected areas and metal mining activities. Biol. Conserv. 160, 272–278 (2013).

Lamb, I. P., Massam, M. R., Mills, S. C., Bryant, R. G. & Edwards, D. P. Global threats of extractive industries to vertebrate biodiversity. Curr. Biol. 34, 3673–3684.e4 (2024).

Cabernard, L. & Pfister, S. Hotspots of mining-related biodiversity loss in global supply chains and the potential for reduction through renewable electricity. Environ. Sci. Technol. 56, 16357–16368 (2022).

International Union for Conservation of Nature, The Biodiversity Consultancy & Durrel Institute of Conservation and Ecology. Global Inventory of Biodiversity Offset Policies (GIBOP) https://portals.iucn.org/offsetpolicy/ (IUCN, 2019).

Performance Standard 6. Biodiversity Conservation and Sustainable Management of Living Natural Resources (International Finance Cooperation, 2012).

Rainey, H. J. et al. A review of corporate goals of no net loss and net positive impact on biodiversity. Oryx 49, 232–238 (2015).

BBOP. Standard on Biodiversity Offsets (Forest Trends, 2012).

A Cross-Sector Guide for Implementing the Mitigation Hierarchy (Cross-Sector Biodiversity Initiative, 2019).

zu Ermgassen, S. O. et al. The ecological outcomes of biodiversity offsets under ‘no net loss’ policies: a global review. Conserv. Lett. 12, e12664 (2019).

Gastauer, M., Caldeira, C. F., Ramos, S. J., Silva, D. F. & Siqueira, J. O. Active rehabilitation of Amazonian sand mines converges soils, plant communities and environmental status to their predisturbance levels. Land Degrad. Dev. 31, 607–618 (2020).

Bidaud, C. et al. The sweet and the bitter: intertwined positive and negative social impacts of a biodiversity offset. Conserv. Soc. 15, 1–13 (2017).

Siqueira-Gay, J., Metzger, J. P., Sánchez, L. E. & Sonter, L. J. Strategic planning to mitigate mining impacts on protected areas in the Brazilian Amazon. Nat. Sustain. 5, 853–860 (2022).

Boldy, R., Annandale, M., Erskine, P. D. & Sonter, L. J. Assessing impacts of mining on provisioning ecosystem services in a culturally diverse landscape of Western Cape York, Australia. Landsc. Ecol. 38, 4467–4481 (2023).

Westside Open Cut Mine Returns to Bushland (NSW Government, 2020).

Forest-Smart Mining: Offset Case Studies. Tech. Rep. (World Bank, 2019).

2023 State of the Artisanal and Small-Scale Mining Sector (World Bank, 2023).

Knutsen, C. H., Kotsadam, A., Olsen, E. H. & Wig, T. Mining and local corruption in Africa. Am. J. Pol. Sci. 61, 320–334 (2017).

van der Ploeg, F. Natural resources: curse or blessing? J. Econ. Lit. 49, 366–420 (2011).

Muñoz, P., Giljum, S. & Roca, J. The raw material equivalents of international trade: empirical evidence for Latin America. J. Ind. Ecol. 13, 881–897 (2009).

Kovanda, J. & Weinzettel, J. The importance of raw material equivalents in economy-wide material flow accounting and its policy dimension. Environ. Sci. Policy 29, 71–80 (2013).

Flückiger, M., Larch, M., Ludwig, M. & Pascali, L. The Dawn of Civilization: Metal Trade and the Rise of Hierarchy. CESifo Working Paper No. 10929 (CESIfo, 2024).

Schaffartzik, A., Mayer, A., Eisenmenger, N. & Krausmann, F. Global patterns of metal extractivism, 1950–2010: providing the bones for the industrial society’s skeleton. Ecol. Econ. 122, 101–110 (2016).

Yellishetty, M. & Mudd, G. M. Substance flow analysis of steel and long term sustainability of iron ore resources in Australia, Brazil, China and India. J. Clean. Prod. 84, 400–410 (2014).

Tcha, M. & Wright, D. Determinants of China’s import demand for Australia’s iron ore. Resour. Policy 25, 143–149 (1999).

Korinek, J. Trade restrictions on minerals and metals. Min. Econ. 32, 171–185 (2019).

Golev, A. & Corder, G. Modelling metal flows in the Australian economy. J. Clean. Prod. 112, 4296–4303 (2016).

Eurostat. International Trade in Goods by Type of Good (European Commission, 2024).

Luckeneder, S., Giljum, S., Maus, V., Sonter, L. J. & Lenzen, M. EU consumption’s hidden link to global deforestation caused by mining. Ecol. Econ. Papers https://doi.org/10.57938/b890eed0-1ab4-43af-b577-df48f43290a6 (2024).

Tukker, A. et al. Environmental and resource footprints in a global context: Europe’s structural deficit in resource endowments. Glob. Environ. Change 40, 171–181 (2016).

Zhou, Y. et al. Assessing the short-to medium-term supply risks of clean energy minerals for China. J. Clean. Prod. 215, 217–225 (2019).

van den Brink, S., Kleijn, R., Tukker, A. & Huisman, J. Approaches to responsible sourcing in mineral supply chains. Resour. Conserv. Recycl. 145, 389–398 (2019).

Piñero, P., Bruckner, M., Wieland, H., Pongrácz, E. & Giljum, S. The raw material basis of global value chains: allocating responsibility based on value generation. Econ. Syst. Res. 31, 206–227 (2019).

Xu, X., Wang, Q., Ran, C. & Mu, M. Is burden responsibility more effective? A value-added method for tracing worldwide carbon emissions. Ecol. Econ. 181, 106889 (2021).

Zeng, Y., Dong, P., Shi, Y., Wang, L. & Li, Y. Analyzing the co-evolution of green technology diffusion and consumers’ pro-environmental attitudes: an agent-based model. J. Clean. Prod. 256, 120384 (2020).

Arendt, R., Muhl, M., Bach, V. & Finkbeiner, M. Criticality assessment of abiotic resource use for Europe — application of the SCARCE method. Resour. Policy 67, 101650 (2020).

Distefano, T., Lodi, L. & Biggeri, M. Material footprint and import dependency in EU27: past trends and future challenges. J. Clean. Prod. 472, 143384 (2024).

Tackling the Challenges in Commodity Markets and on Raw Materials. COM(2011) 25 Final (European Commission, 2011).

Critical Raw Materials Act. COM(2023) 160 (European Commission, 2023).

Bebbington, A., Fash, B. & Rogan, J. Socio-environmental conflict, political settlements, and mining governance: a cross-border comparison, El Salvador and Honduras. Lat. Am. Perspect. 46, 84–106 (2019).

Spalding, R. J. From the streets to the chamber: social movements and the mining ban in El Salvador. Eur. Rev. Latin Am. Carib. Studies https://www.jstor.org/stable/26608620 (2018).

Standard for Responsible Mining. IRMA-STD-001 (Initiative for Responsible Mining Assurance, 2018).

Background Paper for the UN Secretary-General’s Panel on Critical Energy Transition Minerals (United Nations, 2024).

Directive on Corporate Sustainability Due Diligence. Frequently Asked Questions (European Commission, 2024).

Lèbre, É., Corder, G. & Golev, A. The role of the mining industry in a circular economy: a framework for resource management at the mine site level. J. Ind. Ecol. 21, 662–672 (2017).

Joensuu, T., Edelman, H. & Saari, A. Circular economy practices in the built environment. J. Clean. Prod. 276, 124215 (2020).

Aguilar Esteva, L. C., Kasliwal, A., Kinzler, M. S., Kim, H. C. & Keoleian, G. A. Circular economy framework for automobiles: closing energy and material loops. J. Ind. Ecol. 25, 877–889 (2021).

Ramage, M. H. et al. The wood from the trees: the use of timber in construction. Renew. Sustain. Energy Rev. 68, 333–359 (2017).

Duan, Z., Huang, Q. & Zhang, Q. Life cycle assessment of mass timber construction: a review. Build. Environ. 221, 109320 (2022).

Hickel, J. et al. Urgent need for post-growth climate mitigation scenarios. Nat. Energy 6, 766–768 (2021).

Slameršak, A., Kallis, G., O’Neill, D. W. & Hickel, J. Post-growth: a viable path to limiting global warming to 1.5 °C. One Earth 7, 44–58 (2023).

Boykoff, M. T. Creative (Climate) Communications: Productive Pathways for Science, Policy and Society (Cambridge Univ. Press, 2019).

Wiedmann, T. O., Schandl, H. & Moran, D. The footprint of using metals: new metrics of consumption and productivity. Environ. Econ. Policy Studies 17, 369–388 (2015).

Maus, V. & Werner, T. T. Impacts for half of the world’s mining areas are undocumented. Nature 625, 26–29 (2024).

Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

Jasansky, S., Lieber, M., Giljum, S. & Maus, V. An open database on global coal and metal mine production. Sci. Data 10, 52 (2023).

Zhang, C., Xing, J., Li, J., Du, S. & Qin, Q. A new method for the extraction of tailing ponds from very high-resolution remotely sensed images: PSVED. Int. J. Digital Earth 16, 2681–2703 (2023).

Du, S. et al. Open-pit mine change detection from high resolution remote sensing images using DA-UNet++ and object-based approach. Int. J. Min. Reclam. Environ. 36, 512–535 (2022).

Saputra, M. R. U. et al. Multi-modal deep learning approaches to semantic segmentation of mining footprints with multispectral satellite imagery. Remote Sens. Environ. 318, 114584 (2025).

Jasansky, S., Maus, V., Popa, M. & Wilbik, A. Semantic segmentation of mining areas in satellite images: towards a global approach. Preprint at https://papers.ssrn.com/abstract=5114132 (2025).

Crona, B., Parlato, G., Lade, S., Fetzer, I. & Maus, V. Going beyond carbon: an ‘Earth system impact’ score to better capture corporate and investment impacts on the Earth system. J. Clean. Prod. 429, 139523 (2023).

Escobar, N. et al. Spatially-explicit footprints of agricultural commodities: mapping carbon emissions embodied in Brazil’s soy exports. Global Environ. Change 62, 102067 (2020).

Moran, D., Giljum, S., Kanemoto, K. & Godar, J. From satellite to supply chain: new approaches connect Earth observation to economic decisions. One Earth 3, 5–8 (2020).

Wieland, H. et al. The PIOLab: building global physical input–output tables in a virtual laboratory. J. Ind. Ecol. 26, 683–703 (2021).

Sun, X., Hao, H., Zhao, F. & Liu, Z. Tracing global lithium flow: a trade-linked material flow analysis. Resour. Conserv. Recycl. 124, 50–61 (2017).

Kinnunen, P., Karhu, M., Yli-Rantala, E., Kivikytö-Reponen, P. & Mäkinen, J. A review of circular economy strategies for mine tailings. Clean. Eng. Technol. 8, 100499 (2022).

Cotrina-Teatino, M. A. & Marquina-Araujo, J. J. Circular economy in the mining industry: a bibliometric and systematic literature review. Resour. Policy 102, 105513 (2025).

Cisternas, L. A., Ordóñez, J. I., Jeldres, R. I. & Serna-Guerrero, R. Toward the implementation of circular economy strategies: an overview of the current situation in mineral processing. Miner. Process. Extr. Metall. Rev. 43, 775–797 (2022).

Baars, J., Domenech, T., Bleischwitz, R., Melin, H. E. & Heidrich, O. Circular economy strategies for electric vehicle batteries reduce reliance on raw materials. Nat. Sustain. 4, 71–79 (2021).

Ruokamo, E. et al. Exploring the potential of circular economy to mitigate pressures on biodiversity. Glob. Environ. Change 78, 102625 (2023).

Wiedenhofer, D. et al. From extraction to end-uses and waste management: modeling economy-wide material cycles and stock dynamics around the world. J. Ind. Ecol. 28, 1464–1480 (2024).

UNEP International Resource Panel. Global Material Flows Database. Version 2023, https://www.resourcepanel.org/global-material-flows-database (UNEP, 2023).

Source: Nature.com | View original article

Source: https://www.nature.com/articles/s43017-025-00683-w

Leave a Reply

Your email address will not be published. Required fields are marked *