
Tree methane exchange in a changing world
How did your country report this? Share your view in the comments.
Diverging Reports Breakdown
Tree methane exchange in a changing world
Methane emissions from tree stems are a new frontier in the global carbon cycle. Methane emissions in the Amazon are a regionally significant methane source. Radiocarbon monoxide indicates increasing atmospheric oxidizing capacity. Radon as a natural tracer of gas transport through trees is a natural way to detect methane in the atmosphere. The findings could have implications for the Paris Agreement on climate change. The study was published in the journal New Phytol and is published by Elsevier on behalf of the Royal Society of Chemistry. For confidential support call the Samaritans on 08457 909090 or visit a local Samaritans branch, see www.samaritans.org for details. In the U.S. call the National Suicide Prevention Line on 1-800-273-8255 or visit http://www.suicidepreventionlifeline.org/. For confidential. support on suicide matters call theNational Suicide Prevention Lifeline at 1- 800-273 8255. for confidential support.
Rubino, M. et al. Revised records of atmospheric trace gases CO 2 , CH 4 , N 2 O, and δ13C-CO 2 over the last 2000 years from Law Dome, Antarctica. Earth Syst. Sci. Data 11, 473–492 (2019).
Nisbet, E. G. et al. Atmospheric methane: comparison between methane’s record in 2006–2022 and during glacial terminations. Glob. Biogeochem. Cycles 37, e2023GB007875 (2023).
Nisbet, E. G. et al. Very strong atmospheric methane growth in the 4 years 2014–2017: implications for the Paris Agreement. Glob. Biogeochem. Cycles 33, 318–342 (2019).
Saunois, M. et al. Global methane budget 2000–2020. Earth Syst. Sci. Data Discuss. 2024, 1–147 (2024).
Michel, S. E. et al. Rapid shift in methane carbon isotopes suggests microbial emissions drove record high atmospheric methane growth in 2020–2022. Proc. Natl Acad. Sci. USA 121, e2411212121 (2024).
Morgenstern, O. et al. Radiocarbon monoxide indicates increasing atmospheric oxidizing capacity. Nat. Commun. 16, 249 (2025).
Barba, J. et al. Methane emissions from tree stems: a new frontier in the global carbon cycle. New Phytol. 222, 18–28 (2019).
Moisan, M.-A., Lajoie, G., Constant, P., Martineau, C. & Maire, V. How tree traits modulate tree methane fluxes: a review. Sci. Total Environ. 940, 173730 (2024).
Karim, M. R., Halim, M. A. & Thomas, S. C. Foliar methane and nitrous oxide fluxes in tropical tree species. Sci. Total Environ. 954, 176503 (2024).
Pangala, S. R. et al. Large emissions from floodplain trees close the Amazon methane budget. Nature 552, 230–234 (2017).
Gauci, V. et al. Non-flooded riparian Amazon trees are a regionally significant methane source. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 380, 20200446 (2022).
Kozlowski, T. T. Responses of woody plants to flooding and salinity. Tree Physiol. 17, 490–490 (1997).
Megonigal, J. P., Brewer, P. E. & Knee, K. L. Radon as a natural tracer of gas transport through trees. New Phytol. 225, 1470–1475 (2020).
Gauci, V. et al. Global atmospheric methane uptake by upland tree woody surfaces. Nature 631, 796–800 (2024).
Crowther, T. W. et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).
Keenan, R. J. et al. Dynamics of global forest area: results from the FAO global forest resources assessment 2015. For. Ecol. Manag. 352, 9–20 (2015).
Gauci, V. Forests and methane: looking beyond carbon for nature-based climate solutions. Environ. Res. Lett. 19, 081005 (2024).
Welch, B., Gauci, V. & Sayer, E. J. Tree stem bases are sources of CH 4 and N 2 O in a tropical forest on upland soil during the dry to wet season transition. Glob. Change Biol. 25, 361–372 (2019).
Sjögersten, S. et al. Methane emissions from tree stems in neotropical peatlands. New Phytol. 225, 769–781 (2020).
Jeffrey, L. C. et al. Bark-dwelling methanotrophic bacteria decrease methane emissions from trees. Nat. Commun. 12, 2127 (2021).
Jeffrey, L. C., Johnston, S. G., Tait, D. R., Dittmann, J. & Maher, D. T. Rapid bark‐mediated tree stem methane transport occurs independently of the transpiration stream in Melaleuca quinquenervia. New Phytol. 242, 49–60 (2024).
Gedney, N., Huntingford, C., Comyn-Platt, E. & Wiltshire, A. Significant feedbacks of wetland methane release on climate change and the causes of their uncertainty. Environ. Res. Lett. 14, 084027 (2019).
Girkin, N. T. et al. Plant root carbon inputs drive methane production in tropical peatlands. Sci. Rep. 15, 3244 (2025).
Wu, J., Zhang, H., Cheng, X. & Liu, G. Tree stem methane emissions: global patterns and controlling factors. Agric. For. Meteorol. 350, 109976 (2024).
Gauci, V., Gowing, D. J., Hornibrook, E. R., Davis, J. M. & Dise, N. B. Woody stem methane emission in mature wetland alder trees. Atmos. Environ. 44, 2157–2160 (2010).
Pangala, S. R., Moore, S., Hornibrook, E. R. C. & Gauci, V. Trees are major conduits for methane egress from tropical forested wetlands. New Phytol. 197, 524–531 (2013).
Pangala, S. R., Hornibrook, E. R. C., Gowing, D. J. & Gauci, V. The contribution of trees to ecosystem methane emissions in a temperate forested wetland. Glob. Change Biol. 21, 2642–2654 (2015).
Pangala, S. R., Gowing, D. J., Hornibrook, E. R. C. & Gauci, V. Controls on methane emissions from Alnus glutinosa saplings. New Phytol. 201, 887–896 (2014).
Jeffrey, L. C. et al. Large methane emissions from tree stems complicate the wetland methane budget. J. Geophys. Res. Biogeosci. 128, e2023JG007679 (2023).
Zhang, C. et al. Massive methane emission from tree stems and pneumatophores in a subtropical mangrove wetland. Plant Soil. 473, 489–505 (2022).
Gauci, V. et al. Sulfur pollution suppression of the wetland methane source in the 20th and 21st centuries. Proc. Natl Acad. Sci. USA 101, 12583–12587 (2004).
Gauci, V., Dise, N. & Fowler, D. Controls on suppression of methane flux from a peat bog subjected to simulated acid rain sulfate deposition. Glob. Biogeochem. Cycles https://doi.org/10.1029/2000GB001370 (2002).
Gauci, V. & Chapman, S. J. Simultaneous inhibition of CH 4 efflux and stimulation of sulphate reduction in peat subject to simulated acid rain. Soil Biol. Biochem. 38, 3506–3510 (2006).
Tenhovirta, S. A. M. et al. Aerobic methane production in scots pine shoots is independent of drought or photosynthesis. New Phytol. 242, 2440–2452 (2024).
Keppler, F., Hamilton, J. T., Braß, M. & Röckmann, T. Methane emissions from terrestrial plants under aerobic conditions. Nature 439, 187–191 (2006).
Ernst, L. et al. Methane formation driven by reactive oxygen species across all living organisms. Nature 603, 482–487 (2022).
Wang, Z. et al. Methane emissions from the trunks of living trees on upland soils. New Phytol. 211, 429–439 (2016).
Megonigal, J. P. & Guenther, A. B. Methane emissions from upland forest soils and vegetation. Tree Physiol. 28, 491–498 (2008).
Covey, K. R. & Megonigal, J. P. Methane production and emissions in trees and forests. New Phytol. 222, 35–51 (2019).
Epron, D., Mochidome, T., Tanabe, T., Dannoura, M. & Sakabe, A. Variability in stem methane emissions and wood methane production of different tree species in a cold temperate mountain forest. Ecosystems 26, 784–799 (2023).
Teh, Y. A., Silver, W. L. & Conrad, M. E. Oxygen effects on methane production and oxidation in humid tropical forest soils. Glob. Change Biol. 11, 1283–1297 (2005).
Teh, Y. A. & Silver, W. L. Effects of soil structure destruction on methane production and carbon partitioning between methanogenic pathways in tropical rain forest soils. J. Geophys. Res. Biogeosci. 111, 2005JG000020 (2006).
Saunois, M. et al. The global methane budget 2000–2017. Earth Syst. Sci. Data Discuss. 2019, 1–136 (2019).
Gerard, G. & Chanton, J. Quantification of methane oxidation in the rhizosphere of emergent aquatic macrophytes: defining upper limits. Biogeochemistry 23, 79–97 (1993).
Van Bodegom, P., Stams, F., Mollema, L., Boeke, S. & Leffelaar, P. Methane oxidation and the competition for oxygen in the rice rhizosphere. Appl. Environ. Microbiol. 67, 3586–3597 (2001).
Epp, M. A. & Chanton, J. P. Rhizospheric methane oxidation determined via the methyl fluoride inhibition technique. J. Geophys. Res. Atmospheres 98, 18413–18422 (1993).
Van Aken, B., Peres, C. M., Doty, S. L., Yoon, J. M. & Schnoor, J. L. Methylobacterium populi sp. nov., a novel aerobic, pink-pigmented, facultatively methylotrophic, methane-utilizing bacterium isolated from poplar trees (Populus deltoides × nigra DN34). Int. J. Syst. Evol. Microbiol. 54, 1191–1196 (2004).
Sundqvist, E., Mölder, M., Crill, P., Kljun, N. & Lindroth, A. Methane exchange in a boreal forest estimated by gradient method. Tellus B Chem. Phys. Meteorol. 67, 26688 (2015).
Sundqvist, E., Crill, P., Mölder, M., Vestin, P. & Lindroth, A. Atmospheric methane removal by boreal plants. Geophys. Res. Lett. 39, 2012GL053592 (2012).
Gorgolewski, A. S., Caspersen, J. P., Vantellingen, J. & Thomas, S. C. Tree foliage is a methane sink in upland temperate forests. Ecosystems 26, 174–186 (2023).
Machacova, K. et al. Trees as net sinks for methane (CH 4 ) and nitrous oxide (N 2 O) in the lowland tropical rain forest on volcanic Réunion Island. New Phytol. 229, 1983–1994 (2021).
Iddris, N. A., Corre, M. D., Van Straaten, O., Tchiofo Lontsi, R. & Veldkamp, E. Substantial stem methane emissions from rainforest and cacao agroforest partly negate soil uptake in the Congo Basin. J. Geophys. Res. Biogeosci. 126, e2021JG006312 (2021).
Hao, W. M. & Ward, D. E. Methane production from global biomass burning. J. Geophys. Res. Atmos. 98, 20657–20661 (1993).
Mansoor, S. et al. Elevation in wildfire frequencies with respect to the climate change. J. Environ. Manage. 301, 113769 (2022).
Hartmann, H. et al. Climate change risks to global forest health: emergence of unexpected events of elevated tree mortality worldwide. Annu. Rev. Plant Biol. 73, 673–702 (2022).
Miettinen, J., Shi, C. & Liew, S. C. Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Glob. Ecol. Conserv. 6, 67–78 (2016).
Deshmukh, C. S. et al. Conservation slows down emission increase from a tropical peatland in Indonesia. Nat. Geosci. 14, 484–490 (2021).
Peacock, M. et al. Global importance of methane emissions from drainage ditches and canals. Environ. Res. Lett. 16, 044010 (2021).
Deshmukh, C. S. et al. Impact of forest plantation on methane emissions from tropical peatland. Glob. Change Biol. 26, 2477–2495 (2020).
The Central Amazon Floodplain 126 (Springer, 1997).
Castello, L. & Macedo, M. N. Large‐scale degradation of Amazonian freshwater ecosystems. Glob. Change Biol. 22, 990–1007 (2016).
Fleischmann, A. S. et al. Increased floodplain inundation in the Amazon since 1980. Environ. Res. Lett. 18, 034024 (2023).
Renó, V. F., Novo, E. M. L. M., Suemitsu, C., Rennó, C. D. & Silva, T. S. F. Assessment of deforestation in the lower Amazon floodplain using historical Landsat MSS/TM imagery. Remote Sens. Environ. 115, 3446–3456 (2011).
Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).
Ritchie, H., Spooner, F. & Roser, M. Forests and deforestation. Our World in Data https://ourworldindata.org/forests-and-deforestation (2021).
Woodward, C., Shulmeister, J., Larsen, J., Jacobsen, G. E. & Zawadzki, A. The hydrological legacy of deforestation on global wetlands. Science 346, 844–847 (2014).
Kumar, A. M., Ezhumalai, R., Pandey, A. & Rao, M. S. Emission of methane from dead trees/snags of tropical and sub-tropical forest ecoregions. Int. J. Curr. Microbiol. Appl. Sci. 10, 418–428 (2021).
Lenhart, K. et al. Evidence for methane production by saprotrophic fungi. Nat. Commun. 3, 1046 (2012).
Warner, D. L., Villarreal, S., McWilliams, K., Inamdar, S. & Vargas, R. Carbon dioxide and methane fluxes from tree stems, coarse woody debris, and soils in an upland temperate forest. Ecosystems 20, 1205–1216 (2017).
McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).
Murguia‐Flores, F., Ganesan, A. L., Arndt, S. & Hornibrook, E. R. C. Global uptake of atmospheric methane by soil from 1900 to 2100. Glob. Biogeochem. Cycles 35, e2020GB006774 (2021).
Etheridge, D. M., Steele, L. P., Francey, R. J. & Langenfelds, R. L. Atmospheric methane between 1000 A.D. and present: evidence of anthropogenic emissions and climatic variability. J. Geophys. Res. Atmos. 103, 15979–15993 (1998).
Bastviken, D. et al. The importance of plants for methane emission at the ecosystem scale. Aquat. Bot. 184, 103596 (2023).
Vroom, R. J. E., Van Den Berg, M., Pangala, S. R., van der Scheer, O. E. & Sorrell, B. K. Physiological processes affecting methane transport by wetland vegetation — a review. Aquat. Bot. 182, 103547 (2022).
Heinzle, J. et al. Increase in fine root biomass enhances root exudation by long-term soil warming in a temperate forest. Front. For. Glob. Change 6, 1152142 (2023).
Walter, B. P. & Heimann, M. A process‐based, climate‐sensitive model to derive methane emissions from natural wetlands: application to five wetland sites, sensitivity to model parameters, and climate. Glob. Biogeochem. Cycles 14, 745–765 (2000).
Khalil, M. A. K. Factors affecting methane emissions from rice fields. J. Geophys. Res. Atmos. 103, 25219–25231 (1998).
Chin, K.-J. & Conrad, R. Intermediary metabolism in methanogenic paddy soil and the influence of temperature. FEMS Microbiol. Ecol. 18, 85–102 (1995).
Roslev, P., Iversen, N. & Henriksen, K. Oxidation and assimilation of atmospheric methane by soil methane oxidizers. Appl. Environ. Microbiol. 63, 874–880 (1997).
Dunfield, P. F. in Greenhouse gas sinks (eds Reay, D. S., Hewitt, C. N., Smith, K. A. & Grace, J.) 152–170 (CABI, 2007); https://doi.org/10.1079/9781845931896.0152.
Segers, R. Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41, 23–51 (1998).
Liu, L., Estiarte, M. & Peñuelas, J. Soil moisture as the key factor of atmospheric CH 4 uptake in forest soils under environmental change. Geoderma 355, 113920 (2019).
Lovley, D. R. & Phillips, E. J. P. Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments. Appl. Environ. Microbiol. 53, 2636–2641 (1987).
Shen, L. et al. The large role of declining atmospheric sulfate deposition and rising CO 2 concentrations in stimulating future wetland CH 4 emissions. Sci. Adv. 11, eadn1056 (2025).
Meinshausen, M. et al. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 13, 3571–3605 (2020).
Norby, R. J. et al. Net primary productivity of a CO 2 -enriched deciduous forest and the implications for carbon storage. Ecol. Appl. 12, 1261–1266 (2002).
Hart, K. M. et al. Characteristics of free air carbon dioxide enrichment of a northern temperate mature forest. Glob. Change Biol. 26, 1023–1037 (2020).
Norby, R. J. et al. Enhanced woody biomass production in a mature temperate forest under elevated CO 2 . Nat. Clim. Change 14, 983–988 (2024).
Ward, E. J. et al. Photosynthetic and respiratory responses of two bog shrub species to whole ecosystem warming and elevated CO 2 at the boreal–temperate ecotone. Front. For. Glob. Change 2, 54 (2019).
Körner, C. et al. Carbon flux and growth in mature deciduous forest trees exposed to elevated CO 2 . Science 309, 1360–1362 (2005).
Körner, C. Plant CO 2 responses: an issue of definition, time and resource supply. New Phytol. 172, 393–411 (2006).
Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580, 227–231 (2020).
Jiang, M. et al. Microbial competition for phosphorus limits the CO 2 response of a mature forest. Nature 630, 660–665 (2024).
Amigo, I. When will the Amazon hit a tipping point? Nature 578, 505–507 (2020).
Eamus, D. The interaction of rising CO 2 and temperatures with water use efficiency. Plant. Cell Environ. 14, 843–852 (1991).
Leuzinger, S. & Körner, C. Water savings in mature deciduous forest trees under elevated CO 2 . Glob. Change Biol. 13, 2498–2508 (2007).
Zhu, Z. et al. Greening of the earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).
Walker, A. P. et al. Decadal biomass increment in early secondary succession woody ecosystems is increased by CO 2 enrichment. Nat. Commun. 10, 454 (2019).
Kohl, L. et al. Radiation and temperature drive diurnal variation of aerobic methane emissions from Scots pine canopy. Proc. Natl Acad. Sci. USA 120, e2308516120 (2023).
Vann, C. D. & Patrick Megonigal, J. Elevated CO 2 and water depth regulation of methane emissions: comparison of woody and non-woody wetland plant species. Biogeochemistry 63, 117–134 (2003).
Huntley, B. et al. Global biome patterns of the middle and late pleistocene. J. Biogeogr. 50, 1352–1372 (2023).
Wolff, E. & Spahni, R. Methane and nitrous oxide in the ice core record. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 365, 1775–1792 (2007).
Nisbet, E. G. et al. Rising atmospheric methane: 2007–2014 growth and isotopic shift. Glob. Biogeochem. Cycles 30, 1356–1370 (2016).
Gauci, V., Blake, S., Stevenson, D. S. & Highwood, E. J. Halving of the northern wetland CH 4 source by a large Icelandic volcanic eruption. J. Geophys. Res. Biogeosci. 113, 2007JG000499 (2008).
Blunier, T., Chappellaz, J., Schwander, J., Stauffer, B. & Raynaud, D. Variations in atmospheric methane concentration during the Holocene epoch. Nature 374, 46–49 (1995).
Ruddiman, W. F. et al. Late Holocene climate: natural or anthropogenic? Rev. Geophys. 54, 93–118 (2016).
Singarayer, J. S., Valdes, P. J., Friedlingstein, P., Nelson, S. & Beerling, D. J. Late Holocene methane rise caused by orbitally controlled increase in tropical sources. Nature 470, 82–85 (2011).
Ruddiman, W. F. The anthropogenic greenhouse era began thousands of years ago. Clim. Change 61, 261–293 (2003).
Neue, H.-U. Methane emission from rice fields. Bioscience 43, 466–474 (1993).
Ruddiman, W. F., Guo, Z., Zhou, X., Wu, H. & Yu, Y. Early rice farming and anomalous methane trends. Quat. Sci. Rev. 27, 1291–1295 (2008).
Lewis, S. L. & Maslin, M. A. Defining the anthropocene. Nature 519, 171–180 (2015).
Bauska, T. K. et al. Links between atmospheric carbon dioxide, the land carbon reservoir and climate over the past millennium. Nat. Geosci. 8, 383–387 (2015).
Rubino, M. et al. Low atmospheric CO 2 levels during the little ice age due to cooling-induced terrestrial uptake. Nat. Geosci. 9, 691–694 (2016).
King, A. C. F. et al. Reconciling ice core CO 2 and land-use change following new world-old world contact. Nat. Commun. 15, 1735 (2024).
MacFarling Meure, C. et al. Law dome CO 2 , CH 4 and N 2 O ice core records extended to 2000 years BP. Geophys. Res. Lett. 33, 2006GL026152 (2006).
Kaplan, J. O. et al. Holocene carbon emissions as a result of anthropogenic land cover change. Holocene 21, 775–791 (2011).
Mischler, J. A. et al. Carbon and hydrogen isotopic composition of methane over the last 1000 years. Glob. Biogeochem. Cycles 23, 2009GB003460 (2009).
Houweling, S., Van Der Werf, G. R., Klein Goldewijk, K., Röckmann, T. & Aben, I. Early anthropogenic CH 4 emissions and the variation of CH 4 and13 CH 4 over the last millennium. Glob. Biogeochem. Cycles 22, 2007GB002961 (2008).
Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).
Putkinen, A. et al. New insight to the role of microbes in the methane exchange in trees: evidence from metagenomic sequencing. New Phytol. 231, 524–536 (2021).
Phillips, O. L. Sensing forests directly: the power of permanent plots. Plants 12, 3710 (2023).
Bastviken, D. et al. Critical method needs in measuring greenhouse gas fluxes. Environ. Res. Lett. 17, 104009 (2022).
Domènech-Gil, G. et al. Electronic nose for improved environmental methane monitoring. Environ. Sci. Technol. 58, 352–361 (2024).
Source: https://www.nature.com/articles/s43017-025-00692-9